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Abstract and Introduction 

Abstract 

Background Epidemiological studies have provided strong evidence for a role of endogenous sex steroids in 
the etiology of breast cancer. Our aim was to identify common variants in genes involved in sex steroid 
synthesis or metabolism that are associated with hormone levels and the risk of breast cancer in 



premenopausal women. 
Methods We measured urinary levels of estrone glucuronide (E1G) using a protocol specifically developed to 
account for cyclic variation in hormone levels during the menstrual cycle in 729 healthy premenopausal women. 
We genotyped 642 single-nucleotide polymorphisms (SNPs) in these women; a single SNP, rs10273424, was 
further tested for association with the risk of breast cancer using data from 10 551 breast cancer case patients 
and 17 535 control subjects. All statistical tests were two-sided. 
Results rs10273424, which maps approximately 50 kb centromeric to the cytochrome P450 3A (CYP3A) gene 
cluster at chromosome 7q22.1, was associated with a 21.8% reduction in E1G levels (95% confidence interval 
[CI] = 27.8% to 15.3% reduction; P = 2.7 × 10−9) and a modest reduction in the risk of breast cancer in case 
patients who were diagnosed at or before age 50 years (odds ratio [OR] = 0.91, 95% CI = 0.83 to 0.99; P = .03) 
but not in those diagnosed after age 50 years (OR = 1.01, 95% CI = 0.93 to 1.10; P = .82). 
Conclusions Genetic variation in noncoding sequences flanking the CYP3A locus contributes to variance in 
premenopausal E1G levels and is associated with the risk of breast cancer in younger patients. This 
association may have wider implications given that the most predominantly expressed CYP3A gene, CYP3A4, 
is responsible for metabolism of endogenous and exogenous hormones and hormonal agents used in the 
treatment of breast cancer. 

Introduction 

Epidemiological studies have provided strong evidence for a role of endogenous sex steroids in the etiology of 
breast cancer.[1] Specifically, the risk of breast cancer is elevated among women with high postmenopausal 
levels of total estradiol (E2) and estrone (E1), as well as several androgenic precursors, including 
androstenedione, dehydroepiandrostereone (DHEA), and testosterone.[2] In a collaborative reanalysis of nine 
prospective studies of endogenous sex hormones and breast cancer,[2] the relative risks of breast cancer 
associated with a doubling of E2 levels and E1 levels in postmenopausal women were 1.29 (95% confidence 
interval [CI] = 1.15 to 1.44) and 1.46 (95% CI = 1.22 to 1.73), respectively. By contrast, there is evidence that 
postmenopausal levels of sex hormone–binding globulin (SHBG), a protein that binds to and restricts the 
biological activities of E2 and E1, are inversely associated with the risk of breast cancer.[2] 

Epidemiological studies also provide indirect evidence for an association between premenopausal hormone 
levels and the risk of breast cancer;[3] they have established that risk factors for breast cancer include early age 
at menarche, nulliparity, older age at birth of first child, and older age at menopause. In addition, circulating 
levels of estrogens in premenopausal women are approximately 10 times (in the case of E2) and four to five 
times (in the case of E1) higher compared with those in postmenopausal women, suggesting that 
premenopausal estrogen levels may be more relevant with regard to breast cancer etiology. However, 
epidemiological studies that have examined associations between endogenous sex steroid levels and the risk 
of breast cancer in premenopausal women have produced inconsistent results,[4–10] likely because the cyclical 
fluctuation of estrogen levels during the menstrual cycle makes capturing long-term average blood 
concentrations of estrogen in premenopausal women problematic. 

Results of several studies[11–13] have indicated that genetic factors influence the levels of endogenous sex 
steroids in both pre- and postmenopausal women. Thus, common variants in genes involved in sex steroid 
synthesis or metabolism are good candidates for breast cancer predisposition alleles.[14] The statistical power to 
detect such associations is enhanced by measurement of intermediate quantitative phenotypes such as plasma 
or urinary hormone levels.[15] Recent studies of candidate polymorphisms[16]and tag single-nucleotide 
polymorphisms (SNPs)[15,17,18] have revealed robust associations between SNPs at the aromatase (CYP19A1) 
locus and estrogen levels in postmenopausal women[16–18] and between SNPs at the SHBG locus and SHBG 
levels in pre- and postmenopausal women.[15,18,19] However, to our knowledge, none of these variants has been 
found to be associated directly with the risk of breast cancer. 

To better understand the relationship between premenopausal hormone levels and the risk of breast cancer, 
we used a protocol that we previously developed for measuring endogenous hormone levels that takes into 
account the cyclic variation of estrogen and progesterone in premenopausal women, which involves measuring 
creatinine-adjusted urinary estrone glucuronide (E1G) and pregnanediol glucuronide (PG) levels in serial early 
morning urine samples on prespecified days of the menstrual cycle.[20] The aim of this study was to identify 
genetic variants associated with levels of E1G, PG, plasma SHBG, and androgenic precursors in healthy 
premenopausal women and to examine whether these variants are associated with the risks of pre- or 
postmenopausal breast cancer. 



Subjects and Methods 

Study Subjects 

Mammography, Oestrogens, and Growth Factors (MOG) Study. Full details of the MOG study have been 
published previously.[20] Briefly, this is an observational study nested within a trial of annual mammography 
screening in young women that was conducted in Britain.[21] Approximately 54 000 women aged 39–41 years 
were randomly assigned to the intervention arm from 1991 to 1997 and offered annual mammograms until age 
48 years. From 2000 to 2003, women in the intervention arm who were still participating in this trial were invited 
to participate in the MOG study: They were asked to provide a blood sample and complete a questionnaire 
detailing demographic, lifestyle, and reproductive factors. More than 8000 women were enrolled in the study. A 
total of 520 women from the MOG study provided urine samples for the cross-sectional analysis of hormones 
(Figure 1). All of the women included in this analysis reported being of Northern European ancestry, and none 
had been diagnosed with breast cancer at the time of study recruitment. 



 



Figure 1. Sample and single-nucleotide polymorphism (SNP) exclusion schema. Numbers of samples (n) and 
numbers of SNPs (N) analyzed for the cross-sectional analysis of hormone levels and the case–control 
analysis are shown. Of 691 SNPs that were genotyped, 642 (92.9%) were tested for association with hormone 
levels in up to 763 samples. A single SNP, rs10235235, that tags rs10273424 (r2 = 1.0) was taken forward to a 
case–control analysis in combined data from five case–control series totaling 10 551 breast cancer case 
patients and 17 535 control subjects. BBCS = British Breast Cancer study; BGS = Breakthrough Generations 
Study; BIGGS = Breast Cancer in Galway Genetic Study; CGEMS = Cancer Genetic Markers of Susceptibility 
Study; DHEA = dehydroepiandrosterone; DHEAS = dehydroepiandrosterone sulfate; E1G = creatinine-adjusted 
urinary estrone glucuronide; HWE = Hardy–Weinberg Equilibrium; MOG = Mammography Oestrogens and 
Growth Factors study; PG = creatinine-adjusted pregnanediol glucuronide; SHBG = sex hormone–binding 
globulin; SNPs = single-nucleotide polymorphisms; WTCCC = Wellcome Trust Case–Control Consortium. 

British Breast Cancer Study (BBCS). Full details of the BBCS have been published previously.[22] Briefly, the 
BBCS is a national case–control study of breast cancer in which cases of breast cancer were ascertained 
through the cancer registries of England and Scotland and through the National Cancer Research Network. 
Breast cancer patients younger than age 71 years at diagnosis (mean age at diagnosis = 52.4 years, SD = 9.2 
years) were recruited between 2001 and 2010. Case patients were asked to invite a healthy female first-degree 
relative with no history of cancer and a female friend or non-blood relative to participate in the study. A total of 
567 healthy women who were first-degree relatives, friends, or non-blood relatives of the case patients 
provided urine samples for the cross-sectional analysis of hormones; a total of 4911 case patients and 2045 
friends and non-blood relatives of the case patients participated in the case–control analysis. All breast cancer 
case patients and control subjects reported being of Northern European ancestry, and all control subjects were 
free from breast cancer by self-report at the time of study recruitment. 

Breast Cancer In Galway Genetic Study (BIGGS). BIGGS is a case–control study of breast cancer that is 
based in Western Ireland.[23] Recruitment was between 1998 and 2008. Case patients were ascertained through 
the University College Hospital Galway, and control subjects were drawn from the same Western Irish 
population. The mean age at diagnosis of case patients was 52.3 years (SD = 11.3 years). All control subjects 
were aged 60 years or older and had no personal history of cancer and no family history of breast or ovarian 
cancer in a first- or second-degree relative. A total of 950 case patients and 875 control subjects from BIGGS 
were included in the case–control analysis (Figure 1). All breast cancer case patients and control subjects 
reported being of Northern European ancestry. 

Breakthrough Generations Study (BGS). BGS is a cohort study of more than 110 000 women from the UK 
general population, who were recruited beginning in 2003 and from whom detailed questionnaires and blood 
samples have been collected to investigate risk factors for breast cancer.[24] The study participants included 
prevalent breast cancer case patients who were diagnosed before entry into the study. Breast cancer diagnosis 
was self-reported. The mean age at breast cancer diagnosis was 50.8 years (SD = 9.4 years). A total of 3782 
case patients and 4541 control subjects were included in the case–control analysis (Figure 1). All breast cancer 
case patients and control subjects reported being of Northern European ancestry and all control subjects were 
free from breast cancer by self-report at the time of recruitment. 

Collection of blood samples and questionnaire information from all case patients and control subjects was 
undertaken with written informed consent and relevant ethical review board approval (MOG, BBCS, and BGS: 
South East Multicentre Research Ethics Committee; BIGGS Clinical Research Ethical Committee, University 
College Hospital, Galway, Ireland) in accordance with the tenets of the Declaration of Helsinki. 

Cross-sectional Analysis of Hormone Levels 

Eligible premenopausal women ascertained through the MOG study and relatives of case patients (one relative 
per case patient) and control subjects participating in the BBCS were invited to participate in this cross-
sectional analysis by providing serial urine samples at prespecified days during their menstrual cycle. To be 
eligible, women had to be having regular menstrual cycles (ie, their usual cycle length had to be between 21 
and 35 days), not using hormone replacement therapy or oral contraceptives, and not have been diagnosed 
with breast cancer at recruitment to the study. The protocol for measuring follicular and luteal phase urinary 
E1G and PG has been published previously.[20] Briefly, E1G is a principal metabolite of the serum estrogens 
and, when measured in early morning urine samples, is highly correlated with the serum E2 curve, with a delay 
of 1–2 days (25,26). A woman's predicted date of ovulation was estimated from the date of the first day of her 
last menstrual period and her usual cycle length; ovulation was predicted to occur 14 days before the date of 
her next cycle. On the basis of this estimate, women were asked to provide an early morning urine sample on 



each of the 3 days immediately preceding their predicted day of ovulation, on their predicted ovulation day, and 
the first and second days after their predicted day of ovulation (follicular phase samples). They were also asked 
to provide a sample 7 days after the predicted day of ovulation (luteal phase sample). E1G and PG were 
measured using in-house enzyme-linked immunosorbent assays, full details of which have been published 
previously.[27] Briefly, urine samples were incubated with labeled antigen (E1G [catalog number E1752] or PG 
[catalog number P3635]; Sigma-Aldrich, St Louis, MO) conjugated to horseradish peroxidase (catalog number 
P8375; Sigma-Aldrich) in the presence of rabbit antibodies against E1G and PG antibodies (RAB1 and RAB F 
27/7/87, respectively; produced by the Medical Research Council/Agricultural and Food Research Council 
Comparative Physiology Research Group, Institute of Zoology, London, UK). Bound and free antigen were 
separated using solid-phase donkey anti-rabbit IgG (Scottish Antibody Production Unit, Lanarkshire, UK), and 
bound antigen was detected by incubation with o-phenylenediamine (catalog number P9029; Sigma-Aldrich). 
E1G and PG measurements were adjusted for urinary creatinine levels measured colorimetrically (creatinine 
color reagent, CAYM10005315-5; VWR International Ltd, Lutterworth, UK; creatinine standards C3488; Sigma-
Aldrich) using the Jaffe method[28]to account for urine concentration. 

A total of 1087 eligible women (MOG [n = 520], BBCS [n = 567]) who had provided a blood sample also agreed 
to provide serial urine samples (Figure 1). Women who provided fewer than four follicular phase urine samples 
(n = 101 [9.3%]) or who did not provide a luteal phase sample (n = 29 [2.7%]) were excluded. PG was 
measured in luteal phase samples from the remaining 957 eligible women (88.0%; Figure 1). After 
measurement of PG, we excluded samples from women who had a luteal phase PG:creatinine ratio less than 
or equal to 0.3 μmol/mol [the normal range for follicular phase PG:creatinine ratio is ≤0.3 μmol/mol, the PG 
level then increases during the luteal phase (29)], which indicated that the woman had had an anovulatory 
cycle or that samples provided were unlikely to have been taken at the correct phase within her menstrual 
cycle, from further analysis (n = 228 [21.0%]). E1G and PG were analyzed in serial urine samples from the 
remaining 729 women (67.1%; Figure 1). 

SHBG levels were measured in plasma samples from 718 of the 729 women included in the urinary E1G and 
PG analyses with the use of a commercially available radioimmunoassay (catalog number 68563; Orion 
Diagnostica, Espoo, Finland) as previously described (20); there was insufficient plasma for measurement of 
SHBG in 11 samples (Figure 1). To increase the statistical power of the analysis of plasma hormone levels, we 
included 45 women from the MOG study who were excluded from the analysis of urinary hormone levels 
because they had fewer than four follicular phase samples (n = 15), no luteal phase sample (n = 3), or a luteal 
phase PG:creatinine ratio less than or equal to 0.3 μmol/mol (n = 27) (Figure 1). Plasma levels of DHEA, 
dehydroepiandrosterone sulfate (DHEAS), testosterone, and androstenedione were measured in women from 
the MOG study using commercially available radioimmunoassays (DHEA DSL-8900, DHEAS DSL-2700, and 
androstenedione DSL-4200 from Beckman Coulter, Webster, TX; TKTT2 Coat-a-Count [testosterone]; Siemens 
Healthcare Diagnostic Products Ltd, Gwynedd, UK) according to manufacturer's instructions. Sufficient plasma 
was available for measurement of DHEA, DHEAS, testosterone, and androstenedione in 398, 398, 398, and 
397 samples, respectively (Figure 1). 

Case–control Analysis of Breast Cancer Risk 

The case–control series consisted of 950 case patients and 875 control subjects from BIGGS, 3782 case 
subjects and 4541 control subjects from the BGS, and 3217 case patients and 2045 control subjects from the 
BBCS. We also included additional British population–based control subjects (n = 3564), who were healthy 
individuals with no history of cancer ascertained through ongoing UK National Cancer Research Network 
initiatives (30,31), making a total of 5609 British population–based control subjects (Figure 1). A total of 128 of 
the control subjects from the BBCS study, who were included in the cross-sectional analysis of hormone levels, 
were also included in the case–control analysis. Relatives of the BBCS case patients and women ascertained 
through the MOG study were excluded from the case–control analysis. To increase the statistical power of the 
case–control analysis, we used publicly accessible British control data (n = 5667) from the Wellcome Trust 
Case Control Consortium [WTCCC, (32)] and data from both case (n =1145) and control (n =1142) subjects 
from the Cancer Genetic Markers of Susceptibility (CGEMS) study of breast cancer[33] (Figure 1). 

Selection of SNPs for Genotyping 

For the cross-sectional analysis of hormone levels, we selected 42 genes that encode key regulatory 
components of the sex steroid synthesis and metabolism pathways (Supplementary Table 1, available online), 
several of which occur as gene clusters (ie, GSTM1–GSTM3, HSD3B2–HSD3B1, CYP3A5–CYP3A7–CYP3A4, 
CYP1A1–CYP1A2, UGT2B, and AKR1C1–AKR1C2–AKR1C3–AKR1C4) or as a cluster of 13 unique first 



exons that are alternatively spliced to a set of common exons (ie, UGT1A). We selected 753 SNPs to capture 
the common genetic variation within the coding sequences of all 42 genes and at least 20 kb of 5′ and 3′ 
flanking sequence (single genes) or 50 kb of 5′ and 3′ flanking sequence (gene clusters). The SNPs were 
selected with the use of the Tagger program (http://www.broadinstitute.org/mpg/tagger/), which ensures that for 
each locus, all catalogued SNPs with a minor allele frequency (MAF) of at least 5% in the HapMap Centre 
d'Etude du Polymorphisme Humaine (CEPH) population are correlated (r2 ≥ 0.8) with at least one of the 
selected SNPs. SNPs were replaced if they were predicted to have a low genotyping success rate (using 
Illumina's in house algorithms, http://www.illumina.com/) or were less than 60 base pairs from another 
genotyped SNP. We biased the selection of SNPs toward nonsynonymous SNPs where possible, and where 
the linkage disequilibrium structure was such that a single selected tag SNP was correlated with large numbers 
of ungenotyped SNPs (a large tag bin), we selected two tag SNPs rather than a single tag SNP in case the 
original tag SNP failed genotyping, and we included an additional seven nonsynonymous SNPs that had been 
excluded because they had a MAF less than 5%. Our final list included 724 tag SNPs, 22 "second tags" (ie 
SNPs that were a second tag SNP for the largest tag bins), and seven additional rare nonsynonymous SNPs. A 
single SNP, rs10235235 (in the CYP3A gene cluster), was taken forward for the case–control analysis. 

DNA Extraction and Genotyping 

DNA was extracted in house from blood samples that were stored at −80°C using QIAamp DNA Blood mini kits 
(Qiagen, Crawley, West Sussex, UK) and commercially using a proprietary chloroform extraction, ethanol 
precipitation–based method (Tepnel Life Sciences, Manchester, UK) and quantified with the use of PicoGreen 
(Invitrogen, Grand Island, NY [BBCS and BGS samples]) or NanoDrop (Thermo Scientific, Waltham, MA 
[BIGGS samples]) quantification kits. Genotyping for the cross-sectional analysis was performed using 
customized Illumina Sentrix Bead Arrays (Illumina Inc, San Diego, CA) according to the manufacturer's 
protocols. Genotyping for the case–control analysis was carried out using competitive allele-specific 
polymerase chain reaction KASPar chemistry (KBiosciences Ltd, Hertfordshire, UK). 

Post-Genotyping Quality Control 

For the cross-sectional analysis, we genotyped 691 tag SNPs in 774 samples (729 samples included in the 
urinary hormones analysis and 45 additional samples included in the plasma analyses) (Figure 1). DNA 
samples with a GenCall score less than 0.25 at any locus were considered "no calls" 
(http://www.illumina.com/Documents/products/technotes/technote_gencall_data_analysis_software.pdf). There 
were no samples that were deemed to have failed (defined as generating genotypes at <90% of loci). We 
excluded 16 SNPs that had a call rate less than 95%, six SNPs that were monomorphic in our samples, five 
SNPs that showed deviation from Hardy–Weinberg equilibrium (P < 10−3), and 20 SNPs that had been selected 
as second tags for large tag bins but for which the original tag passed post-genotyping quality control. To avoid 
colinearity in regression models that adjusted for multiple SNPs at a single locus, we excluded two additional 
SNPs that were highly correlated (r2 > 0.9) with another SNP at the same locus in our data but not in HapMap 
CEPH data. After these exclusions, 642 SNPs were available for analysis in 729 samples that were tested for 
urinary E1G and PG; 763 samples that were tested for circulating SHBG; 398 samples that were tested for 
circulating DHEAS, DHEA, and testosterone; and 397 samples that were tested for circulating androstenedione 
(Figure 1). The mean call rate per sample was 99.5%, and the mean call rate per SNP was 99.9%. Full details 
of the genes and SNPs are given in Supplementary Table 2 (available online). 

For the case–control analysis of rs10235235, call rates were 98.0% (BBCS), 96.6% (BGS), and 96.5% 
(BIGGS). Deviation of the genotype frequencies from those expected under Hardy–Weinberg equilibrium was 
assessed by a Fisher exact test in each control population; there was no evidence of departure from Hardy–
Weinberg equilibrium in any of the control populations (BBCS: P = .29; BGS: P = .92; BIGGS: P = .06). For 
each study, we randomly selected a set of samples (1% of the BBCS samples, 5% of the BGS samples, and 
5% of the BIGGS samples) to be re-genotyped to test for concordance between the two calls and found that 
duplicate concordance was 100%. 

Statistical Analysis 

Statistical analyses were performed using R (version 2.11, http://cran.r-project.org) and STATA software 
(version 11.0; College Station, TX). All reported P values are two-sided. 

Cross-sectional Analysis. The percent change in hormone level per allele of each SNP was estimated using 
linear regression models of loge-transformed hormone levels that adjusted for 1) hormone measurement batch 
only, 2) hormone measurement batch and time between blood draw and analysis, or 3) hormone measurement 



batch, age group (<35, 35–44, ≥45 years), body mass index at the time of interview (<25, 25 to <30, ≥30 
kg/m2), and parity (0, 1–2, ≥3 full-term pregnancies). After adjusting for hormone measurement batch, 
adjustment for the additional covariates did not alter the estimates of effect size, and therefore the results 
presented are adjusted for hormone measurement batch only. We used t tests of the regression coefficient to 
estimate P values for linear trend. Quantile–quantile (Q–Q) plots of the P values were produced for each 
hormone. We applied a Bonferroni correction to establish a global statistical significance level of P less than 1 
× 10−5, based on our testing of eight hormone measures (E1G, PG, SHBG, DHEA, DHEAS, androstenedione, 
testosterone, and the ratio of testosterone to SHBG) and 642 SNPs. For the two loci that included at least one 
SNP that was associated with hormone levels (P < 1 × 10−5), haplotypes were imputed by using haplo.stats 
software (http://cran.r-project.org/web/packages/haplo.stats). Gaussian generalized linear models of loge-
transformed hormone level (adjusted for hormone batch) were fitted to estimate the percent change in hormone 
levels associated with common haplotypes (ie, those with a frequency >0.5% in this sample of women), taking 
into account the uncertainty in haplotype allocation. 

Case–control Analysis. We calculated the per-allele odds ratios (ORs) and associated 95% confidence 
intervals (CIs) for each study and for all studies combined using unconditional logistic regression (adjusted for 
study in the combined analyses). P values were estimated using likelihood ratio tests with 1 df. We calculated 
the Cochran Q statistic to test for between-study heterogeneity and the I2 statistic to quantify the proportion of 
the total variation due to between-study heterogeneity.[34] All of the women who participated in the analysis of 
hormone levels were aged 53 years or younger and premenopausal; because menopausal status at diagnosis 
cannot be easily ascertained retrospectively, we used age at diagnosis as a proxy to test whether the 
association between genotype and risk of breast cancer differed according to menopausal status. We stratified 
the case patients by age at diagnosis (≤50 vs >50 years) and used case-only unconditional logistic regression 
to test for a statistical interaction between genotype and age at diagnosis. We also analyzed the data excluding 
breast cancer case patients who were aged 46–54 years at diagnosis (ie, potentially perimenopausal). We 
used unconditional logistic regression to calculate age group–specific odds ratios; case patients in each age 
group were compared with all control subjects, and the age group–specific odds ratio was adjusted for study in 
the combined analysis. P values were estimated using likelihood ratio tests. 

Bioinformatics 

Linkage disequilibrium metrics (ie, r2 and D′) between SNPs reported in HapMap were based on release 27 of 
the National Center for Biotechnology Information genome Build 36.3 and were computed using the Tagzilla 
module as implemented in GLU version 1.0a6 (http://code.google.com/p/glu-genetics/). The structure of the 
amino-terminal G domain of SHBG, bound to several different ligands, has been solved by x-ray 
crystallography previously.[35] To investigate the potential impact of rs6258 (P185L) on the structure of SHBG, 
we looked for evidence of cross-species conservation at this region using ClustalW (www.clustal.org/) and 
examined the structure of SHBG binding to estradiol (Protein Data Base code 1LHO) solved to 1.8 Å.[36] We 
simulated the effect of a proline (P) to leucine (L) substitution at amino acid position 185 by mutating the 
residue within Discovery Studio (http://accelrys.com/products/discovery-studio) and subsequently performed a 
minimization followed by a short dynamics run using the YASARA program[37]with the YAMBER3 force field at 
300 K for 100 picoseconds. 

Results 

The first aim of this study was to identify genetic variants associated with sex hormone levels in healthy 
premenopausal women. We tested each of the 642 tag SNPs that we genotyped for association with E1G, PG, 
SHBG, the androgenic precursors DHEA, DHEAS, androstenedione, testosterone, and the testosterone:SHBG 
ratio and summarized the results using Q–Q plots (Supplementary Figure 1, available online) 

Associations Between SNPs and Urinary E1G Levels 

Based on the predefined statistical significance threshold of P less than 1 × 10−5, there was evidence of an 
association between one SNP, rs10273424, and urinary E1G levels. The minor allele of rs10273424, which 
maps to 7q22.1 (99 034 009 bps), approximately 50 kb centromeric to CYP3A5, was associated with a per-
allele change in E1G levels of −21.8% (95% CI = −27.8% to −15.3%; P = 2.7 × 10−9) (Table 1) and accounted 
for 4.9% of the variation in E1G levels. There was no evidence of an association between rs10273424 and 
levels of any of the other hormones measured. 



Table 1. Associations between single-nucleotide polymorphisms (SNPs) spanning 262 kb 
mapping to 7q22.1 (cytochrome P450 3A cluster) and urinary estrone glucuronide levels in 
729 premenopausal women* 

Geometric mean 
E1G level in 
μmol/mol by 
genotype‡,§ 

SNP Coordinate† 

Major 
allele, 
minor 
allele MAF 11 (n) 12 + 22 

(n) 

Per-allele 
change in 

E1G‡, % (95% 
CI) Ptrend∥ 

Per-allele 
change in 

E1G¶, % (95% 
CI) Ptrend∥

rs10273424 99034009 T, A 0.07 17.8 
(619) 13.9 (96) −21.8 (−27.8 

to −15.3) 
2.7 × 
10−9 

−26.2 (−32.7 
to −19.0) 

1.9 × 
10−10 

rs7792939 99045812 T, C 0.13 16.6 
(551) 

17.7 
(177) 

6.3 (0.1 to 
12.9) .05 17.9 (5.5 to 

31.7) .004 

rs776746 99108475 G, A 0.07 16.9 
(629) 

16.4 
(100) 

−2.6 (−10.1 
to 5.4) .51 4.9 (−13.4 to 

27.1) .62 

rs2257401 99144621 G, C 0.09 16.9 
(609) 

16.7 
(120) 

−1.3 (−8.0 to 
5.9) .72 −5.6 (−20.6 

to 12.2) .51 

rs6945984 99186264 T, C 0.11 16.9 
(577) 

16.7 
(151) 

−1.1 (−7.3 to 
5.5) .74 −3.4 (−26.2 

to 26.4) .80 

rs4986910 99196460 T, C 0.01 16.8 
(720) 20.6 (9) 22.3 (−5.5 to 

58.2) .13 3.3 (−12.4 to 
21.9) .70 

rs2242480 99199402 C, T 0.09 16.9 
(598) 

16.7 
(127) 

−0.1 (−6.6 to 
6.8) .98 3.6 (−2.5 to 

10.1) .26 

rs4646437 99203019 C, T 0.10 16.9 
(591) 

16.9 
(138) 

0.9 (−5.6 to 
7.8) .80 −0.9 (−21.6 

to 25.3) .94 

rs680055 99295541 G, C 0.05 16.8 
(659) 17.0 (70) 1.1 (−7.9 to 

11.0) .82 14.4 (−11.6 
to 47.9) .31 

* CI = confidence interval; E1G = creatinine-adjusted mean follicular urinary estrone glucuronide; MAF = minor 
allele frequency; n = number of individuals with the given genotype. 
† In base pairs, Build 36.3. 
‡ Adjusted for hormone measurement batch only. 
§ MAFs for all of the SNPs at this locus are low, and in each case, there were fewer than 20 women with the 22 
genotype; accordingly, geometric mean E1G levels are presented for 12 and 22 genotypes combined. 11 = 
common allele homozygote, 12 = heterozygote, 22 = rare allele homozygote. 
| Two-sided t test (1 df) for null hypothesis that the per-allele difference = 0%. 
¶ Adjusted for hormone measurement batch and eight other SNPs genotyped at the CYP3A locus. 

Among the 642 SNPs that we genotyped, an additional eight SNPs mapped to the 262-kb region spanning the 
CYP3A5–CYP3A7–CYP3A4 cluster (Figure 2). None of these other SNPs was associated with urinary E1G 
levels (Table 1) or with the levels of any of the other hormones tested (data not shown). In an analysis that 
adjusted for the other eight SNPs in the CYP3A cluster, rs10273424 was associated with a per-allele change in 
E1G levels of −26.2% (95% CI = −32.7% to −19.0%; P = 1.9 × 10−10). In addition, there was some evidence that 
the minor allele of a second SNP (rs7792939) that maps 38 kb centromeric to CYP3A5 (Figure 2) was 
associated with a per-allele increase in E1G levels of 17.9% (95% CI = 5.5% to 31.7%, P = .004), but this 
association was not statistically significant after Bonferroni correction for multiple testing. These nine SNPs 
defined 10 main haplotypes (frequency > 0.5% in this study), three of which carried the minor allele of 
rs10273424 (Supplementary Table 3, available online). The association between rs10273424 and lower urinary 
E1G level was confined to a single haplotype (frequency = 3.8%) that included the common alleles at each of 
the other eight SNPs. This haplotype was associated with a 32.3% reduction in urinary E1G level (95% CI = 
38.9% to 24.9% reduction, P = 3.5 × 10−13). 



Table 1. Associations between single-nucleotide polymorphisms (SNPs) spanning 262 kb 
mapping to 7q22.1 (cytochrome P450 3A cluster) and urinary estrone glucuronide levels in 
729 premenopausal women* 

Geometric mean 
E1G level in 
μmol/mol by 
genotype‡,§ 

SNP Coordinate† 

Major 
allele, 
minor 
allele MAF 11 (n) 12 + 22 

(n) 

Per-allele 
change in 

E1G‡, % (95% 
CI) Ptrend∥ 

Per-allele 
change in 

E1G¶, % (95% 
CI) Ptrend∥

rs10273424 99034009 T, A 0.07 17.8 
(619) 13.9 (96) −21.8 (−27.8 

to −15.3) 
2.7 × 
10−9 

−26.2 (−32.7 
to −19.0) 

1.9 × 
10−10 

rs7792939 99045812 T, C 0.13 16.6 
(551) 

17.7 
(177) 

6.3 (0.1 to 
12.9) .05 17.9 (5.5 to 

31.7) .004 

rs776746 99108475 G, A 0.07 16.9 
(629) 

16.4 
(100) 

−2.6 (−10.1 
to 5.4) .51 4.9 (−13.4 to 

27.1) .62 

rs2257401 99144621 G, C 0.09 16.9 
(609) 

16.7 
(120) 

−1.3 (−8.0 to 
5.9) .72 −5.6 (−20.6 

to 12.2) .51 

rs6945984 99186264 T, C 0.11 16.9 
(577) 

16.7 
(151) 

−1.1 (−7.3 to 
5.5) .74 −3.4 (−26.2 

to 26.4) .80 

rs4986910 99196460 T, C 0.01 16.8 
(720) 20.6 (9) 22.3 (−5.5 to 

58.2) .13 3.3 (−12.4 to 
21.9) .70 

rs2242480 99199402 C, T 0.09 16.9 
(598) 

16.7 
(127) 

−0.1 (−6.6 to 
6.8) .98 3.6 (−2.5 to 

10.1) .26 

rs4646437 99203019 C, T 0.10 16.9 
(591) 

16.9 
(138) 

0.9 (−5.6 to 
7.8) .80 −0.9 (−21.6 

to 25.3) .94 

rs680055 99295541 G, C 0.05 16.8 
(659) 17.0 (70) 1.1 (−7.9 to 

11.0) .82 14.4 (−11.6 
to 47.9) .31 

* CI = confidence interval; E1G = creatinine-adjusted mean follicular urinary estrone glucuronide; MAF = minor 
allele frequency; n = number of individuals with the given genotype. 
† In base pairs, Build 36.3. 
‡ Adjusted for hormone measurement batch only. 
§ MAFs for all of the SNPs at this locus are low, and in each case, there were fewer than 20 women with the 22 
genotype; accordingly, geometric mean E1G levels are presented for 12 and 22 genotypes combined. 11 = 
common allele homozygote, 12 = heterozygote, 22 = rare allele homozygote. 
| Two-sided t test (1 df) for null hypothesis that the per-allele difference = 0%. 
¶ Adjusted for hormone measurement batch and eight other SNPs genotyped at the CYP3A locus. 



 
Figure 2. Location and linkage disequilibrium (LD) structure of the cytochrome-P450 3A (CYP3A) gene cluster. 
The locations and the LD structure between single-nucleotide polymorphisms (SNPs) across the CYP3A 
cluster (7q22.1; 99 034 009 to 99 295 541 bps) based on data from 774 women of Northern European 
ancestry genotyped in this analysis are shown. The locations of all four CYP3A gene family members 
(CYP3A5, CYP3A7, CYP3A4, and CYP3A43) and one additional gene, zinc finger protein 498 (ZNF498), which 
maps to this region, based on NCBI build 36.3 (http://hapmap.ncbi.nlm.nih.gov/cgi-
perl/gbrowse/hapmap24_B36/) are shown above the LD plot. The LD plot shows estimates of the square of the 
correlation coefficient (r2) in grayscale (black = 1, white = 0), calculated for each pair-wise comparison of SNPs 
derived by the Haploview program (www.broad.mit.edu/mpg/haploview/). 

Associations Between SNPs and Plasma SHBG Levels 



Two SNPs—rs6258 and rs727428—both of which map to 17p13 (SHBG locus), were statistically significantly 
associated with plasma SHBG levels (P < 1.0 × 10−5; Table 2 and Figure 3). rs6258 (7 475 403 bps) is a rare 
(MAF = 0.01) nonsynonymous SNP that results in a proline to leucine change at amino acid 185 (P185L). The 
rare allele of rs6258 (185L) was associated with a 59.9% reduction in plasma SHBG levels (95% CI = 69.6% to 
47.2% reduction, P = 1.3 × 10−10) and accounted for 4.9% of the variation in SHBG levels. The proline at amino 
acid position 185 is highly conserved across species and falls within a 31-amino acid region of conserved 
sequence (Supplementary Figure 2, available online). This region is unlikely to influence estradiol binding 
(Figure 4); instead, these amino acids define a region on the surface of SHBG that binds to a calcium ion that is 
required for stabilizing the active SHBG dimer.[38] In silico simulation analysis, in which the proline at position 
185 was substituted with a leucine, caused the calcium ion to move by 0.52 Å, an alteration that may 
destabilize the SHBG dimer. In addition, the residue at position 185 is quite near to the dimer interface. 
Therefore, rs6258 may be causally associated with reduced plasma SHBG level. The minor allele of rs727428 
(7 478 517 bps), a noncoding SNP that maps 1 kb 5′ (telomeric) to SHBG, was associated with a per-allele 
reduction in plasma SHBG levels of 10.0% (95% CI = 14.0% to 5.8% reduction; P = 7.0 × 10−6). Neither 
rs727428 nor rs6258 was associated with levels of any of the other hormones tested or the ratio (data not 
shown). 

Table 2. Associations between single-nucleotide polymorphisms (SNPs) spanning 16 kb 
mapping to 17p13.1 (sex hormone-binding globulin [SHBG] gene) and plasma SHBG levels 
in 763 premenopausal women* 

Geometric mean SHBG 
level in nmol/L by 

genotype§,∥ 
SNP Coordinate† 

Major 
allele, 
minor 
allele MAF‡ 11 (n) 12 (n) 22 (n) 

Per-allele 
change in 
SHBG§, % 
(95% CI) Ptrend

¶ 

Per-allele 
change in 
SHBG#, % 
(95% CI) Ptrend∥

rs13894 7470627 C, T 0.07 51.3 
(624) 

42.4 
(104) NA −15.1 (−22.0 

to −7.6) 
1.6 × 
10−4 

−11.4 (−19.6 
to −2.4) .01 

rs858521 7470872 C, G 0.37 50.1 
(284) 

50.3 
(342) 

48.4 
(102) 

−1.3 (−5.8 to 
3.5) .59 −6.4 (−16.8 

to 5.4) .27 

rs1799941 7474148 G, A 0.25 47.9 
(412) 

52.2 
(272) 

55.7 
(45) 

8.4 (3.0 to 
14.2) .002 −3.3 (−14.3 

to 9.1) .58 

rs6258 7475403 C, T 0.01 50.7 
(719) 

20.3 
(10) NA −59.9 (−69.6 

to −47.2) 
1.3 × 
10−10 

−56.9 (−67.5 
to −42.8) 

7.9 × 
10−9 

rs727428 7478517 G, A 0.45 54.9 
(209) 

49.9 
(376) 

44.4 
(144) 

−10.0 (−14.0 
to −5.8) 

7.0 × 
10−6 

−12.1 (−18.6 
to −5.2) 

9.3 × 
10−4 

rs2955617 7479510 T, G 0.35 52.1 
(303) 

49.3 
(343) 

45.3 
(83) 

−6.4 (−10.7 
to −1.8) .01 8.2 (−5.8 to 

24.4) .27 

rs1641544 7480591 G, A 0.05 50.4 
(650) 

49.9 
(79) NA −1.9 (−11.3 

to 8.5) .71 6.4 (−5.4 to 
19.7) .30 

rs1641536 7486709 G, A 0.13 51.2 
(546) 

46.7 
(183) NA −8.3 (−14.4 

to −1.8) .01 −13.4 (−21.1 
to −4.9) .003 

* CI = confidence interval; MAF = minor allele frequency; n = number of individuals with the given genotype; NA 
= not applicable. 
† In base pairs, Build 36.3. 
‡ MAFs are presented to two decimal places; the MAF for rs6258 was 0.007 and is rounded to 0.01 in the 
table. 
§ Adjusted for hormone measurement batch only. 
| Geometric means are presented for 12 and 22 genotypes combined when there were fewer than 20 women 
with the 22 genotype. 11 = common allele homozygote, 12 = heterozygote, 22 = rare allele homozygote. 
¶ Two-sided t test (1 df) for null hypothesis that the per-allele difference = 0%. 
# Adjusted for hormone measurement batch and seven other SNPs genotyped at the SHBG locus. 



 
Figure 3. Location and linkage disequilibrium (LD) structure of the sex hormone–binding globulin (SHBG) 
locus. The locations and the LD structure between single-nucleotide polymorphisms (SNPs) across the SHBG 
locus (17p13; 7 470 627 to 7 486 709 bps) based on data from 774 women of Northern European ancestry 
genotyped in this analysis are shown. The locations of SHBG and one additional gene, spermidine N1-acetyl 
transferase family member 2 (SAT2), which maps to this region, based on NCBI build 36.3 
(http://hapmap.ncbi.nlm.nih.gov/cgi-perl/gbrowse/hapmap24_B36/) are shown above the LD plot. The LD plot 
shows estimates of the square of the correlation coefficient (r2) in grayscale (black = 1, white = 0), calculated 



for each pair-wise comparison of SNPs derived by the Haploview program 
(www.broad.mit.edu/mpg/haploview/). 

 
Figure 4. X-ray crystallographic structure of the sex hormone–binding globulin (SHBG) dimer binding to 
estradiol. X-ray crystallographic structure of the SHBG dimer binding to estradiol (Protein Data Bank code 
1LHO) solved to 1.8 Å. (36) A conserved region (Supplementary Figure 2, available online) centered on proline 
185 (indicated in gold) defines the surface that binds to a calcium ion (indicated in green) and which is 
required for stabilizing the active SHBG dimer. The estradiol (indicated in red) binding site lies distal to P185. 

We successfully genotyped eight SNPs that mapped to the SHBG locus (7 470 627–7 486 709 bps); two of 
those SNPs—rs13894 (7 470 627 bps) and rs1799941 (7 474 148 bps)—showed some evidence of 
association with plasma SHBG levels, albeit not at the predefined statistical significance threshold of P less 
than 1 × 10−5. The minor allele of rs13894 was associated with a per-allele reduction in SHBG levels of 15.1% 
(95% CI = 22.0% to 7.6% reduction; P = 1.6 × 10−4), and the minor allele of rs1799941 was associated with a 
per-allele increase in SHBG levels of 8.4% (95% CI = 3.0% to 14.2%; P = .002). However, rs727428 is weakly 
correlated with rs1799941 (r2 = 0.27, D′ = 0.99), and rs6258 is weakly correlated with rs13894 (r2 = 0.08, D′ = 
1.0); in an analysis adjusting for all eight SNPs that were genotyped at this locus, only rs6258 remained 
statistically significantly associated with plasma SHBG levels (per-allele reduction in SHBG levels of 56.9%, 
95% CI = 67.5% to 42.8% reduction; P = 7.9 × 10−9) (Table 2). These eight SNPs defined 10 haplotypes 
(frequency > 0.5% in this study); only the haplotype carrying the rare allele of rs6258 was statistically 
significantly associated with plasma SHBG levels (Supplementary Table 4, available online). This haplotype 



was associated with a 56.7% reduction in plasma SHBG level (95% CI = 66.7% to 43.6% reduction, P = 8.2 × 
10−10). 

Table 2. Associations between single-nucleotide polymorphisms (SNPs) spanning 16 kb 
mapping to 17p13.1 (sex hormone-binding globulin [SHBG] gene) and plasma SHBG levels 
in 763 premenopausal women* 

Geometric mean SHBG 
level in nmol/L by 

genotype§,∥ 
SNP Coordinate† 

Major 
allele, 
minor 
allele MAF‡ 11 (n) 12 (n) 22 (n) 

Per-allele 
change in 
SHBG§, % 
(95% CI) Ptrend

¶ 

Per-allele 
change in 
SHBG#, % 
(95% CI) Ptrend∥

rs13894 7470627 C, T 0.07 51.3 
(624) 

42.4 
(104) NA −15.1 (−22.0 

to −7.6) 
1.6 × 
10−4 

−11.4 (−19.6 
to −2.4) .01 

rs858521 7470872 C, G 0.37 50.1 
(284) 

50.3 
(342) 

48.4 
(102) 

−1.3 (−5.8 to 
3.5) .59 −6.4 (−16.8 

to 5.4) .27 

rs1799941 7474148 G, A 0.25 47.9 
(412) 

52.2 
(272) 

55.7 
(45) 

8.4 (3.0 to 
14.2) .002 −3.3 (−14.3 

to 9.1) .58 

rs6258 7475403 C, T 0.01 50.7 
(719) 

20.3 
(10) NA −59.9 (−69.6 

to −47.2) 
1.3 × 
10−10 

−56.9 (−67.5 
to −42.8) 

7.9 × 
10−9 

rs727428 7478517 G, A 0.45 54.9 
(209) 

49.9 
(376) 

44.4 
(144) 

−10.0 (−14.0 
to −5.8) 

7.0 × 
10−6 

−12.1 (−18.6 
to −5.2) 

9.3 × 
10−4 

rs2955617 7479510 T, G 0.35 52.1 
(303) 

49.3 
(343) 

45.3 
(83) 

−6.4 (−10.7 
to −1.8) .01 8.2 (−5.8 to 

24.4) .27 

rs1641544 7480591 G, A 0.05 50.4 
(650) 

49.9 
(79) NA −1.9 (−11.3 

to 8.5) .71 6.4 (−5.4 to 
19.7) .30 

rs1641536 7486709 G, A 0.13 51.2 
(546) 

46.7 
(183) NA −8.3 (−14.4 

to −1.8) .01 −13.4 (−21.1 
to −4.9) .003 

* CI = confidence interval; MAF = minor allele frequency; n = number of individuals with the given genotype; NA 
= not applicable. 
† In base pairs, Build 36.3. 
‡ MAFs are presented to two decimal places; the MAF for rs6258 was 0.007 and is rounded to 0.01 in the 
table. 
§ Adjusted for hormone measurement batch only. 
| Geometric means are presented for 12 and 22 genotypes combined when there were fewer than 20 women 
with the 22 genotype. 11 = common allele homozygote, 12 = heterozygote, 22 = rare allele homozygote. 
¶ Two-sided t test (1 df) for null hypothesis that the per-allele difference = 0%. 
# Adjusted for hormone measurement batch and seven other SNPs genotyped at the SHBG locus. 

Associations Between SNPs and the Risk of Breast Cancer 

Previous studies that used sex hormone levels as an intermediate phenotype for breast cancer have 
demonstrated strong associations between genetic variants and circulating hormone levels,[15–17] but these same 
variants were not directly associated with the risk of breast cancer. This lack of association may, in part, have 
been due to a lack of statistical power. We used data from a combined reanalysis of nine prospective studies of 
postmenopausal women[2]to estimate the numbers of case patients and control subjects required to detect an 
association between rs10273424 or rs6258 and risk of breast cancer. In the combined reanalysis,[2] the odds 
ratio of breast cancer associated with a doubling of plasma E1 levels was 1.46 (95% CI = 1.22 to 1.73, P = 1.0 
× 10−5). Based on these data, a 26% reduction in E1 levels (Table 1) would correspond to an odds ratio of 0.89 
and an analysis of 9000 case patients and 9000 control subjects would have 80% power to detect an 
association between rs10273424 (CYP3A cluster) and the risk of breast cancer at a 5% level of statistical 
significance. In the same combined reanalysis,[2] a doubling of plasma SHBG levels was associated with an 
odds ratio of 0.88 (95% CI = 0.76 to 1.03, P = .062). For rs6258 (SHBG), therefore, a 57% reduction in SHBG 
levels (Table 3) would correspond to an odds ratio of 1.15 and an analysis of 55 000 case patients and 55 000 
control subjects would be required for similar statistical power. 



Table 1. Associations between single-nucleotide polymorphisms (SNPs) spanning 262 kb 
mapping to 7q22.1 (cytochrome P450 3A cluster) and urinary estrone glucuronide levels in 
729 premenopausal women* 

Geometric mean 
E1G level in 
μmol/mol by 
genotype‡,§ 

SNP Coordinate† 

Major 
allele, 
minor 
allele MAF 11 (n) 12 + 22 

(n) 

Per-allele 
change in 

E1G‡, % (95% 
CI) Ptrend∥ 

Per-allele 
change in 

E1G¶, % (95% 
CI) Ptrend∥

rs10273424 99034009 T, A 0.07 17.8 
(619) 13.9 (96) −21.8 (−27.8 

to −15.3) 
2.7 × 
10−9 

−26.2 (−32.7 
to −19.0) 

1.9 × 
10−10 

rs7792939 99045812 T, C 0.13 16.6 
(551) 

17.7 
(177) 

6.3 (0.1 to 
12.9) .05 17.9 (5.5 to 

31.7) .004 

rs776746 99108475 G, A 0.07 16.9 
(629) 

16.4 
(100) 

−2.6 (−10.1 
to 5.4) .51 4.9 (−13.4 to 

27.1) .62 

rs2257401 99144621 G, C 0.09 16.9 
(609) 

16.7 
(120) 

−1.3 (−8.0 to 
5.9) .72 −5.6 (−20.6 

to 12.2) .51 

rs6945984 99186264 T, C 0.11 16.9 
(577) 

16.7 
(151) 

−1.1 (−7.3 to 
5.5) .74 −3.4 (−26.2 

to 26.4) .80 

rs4986910 99196460 T, C 0.01 16.8 
(720) 20.6 (9) 22.3 (−5.5 to 

58.2) .13 3.3 (−12.4 to 
21.9) .70 

rs2242480 99199402 C, T 0.09 16.9 
(598) 

16.7 
(127) 

−0.1 (−6.6 to 
6.8) .98 3.6 (−2.5 to 

10.1) .26 

rs4646437 99203019 C, T 0.10 16.9 
(591) 

16.9 
(138) 

0.9 (−5.6 to 
7.8) .80 −0.9 (−21.6 

to 25.3) .94 

rs680055 99295541 G, C 0.05 16.8 
(659) 17.0 (70) 1.1 (−7.9 to 

11.0) .82 14.4 (−11.6 
to 47.9) .31 

* CI = confidence interval; E1G = creatinine-adjusted mean follicular urinary estrone glucuronide; MAF = minor 
allele frequency; n = number of individuals with the given genotype. 
† In base pairs, Build 36.3. 
‡ Adjusted for hormone measurement batch only. 
§ MAFs for all of the SNPs at this locus are low, and in each case, there were fewer than 20 women with the 22 
genotype; accordingly, geometric mean E1G levels are presented for 12 and 22 genotypes combined. 11 = 
common allele homozygote, 12 = heterozygote, 22 = rare allele homozygote. 
| Two-sided t test (1 df) for null hypothesis that the per-allele difference = 0%. 
¶ Adjusted for hormone measurement batch and eight other SNPs genotyped at the CYP3A locus. 

Table 3. Maternal and offspring characteristics at baseline and follow-up according to level 
of participation. 

All case subjects Case subjects aged ≤50 y at 
diagnosis 

Case subjects aged >50 y at 
diagnosis 

Study 

No. of case 
subjects/No. of 
control subjects 

OR 
(95% 
CI) 

P† 
No. of case 

subjects/No. of 
control subjects

OR 
(95% 
CI) 

P† 
No. of case 

subjects/No. of 
control subjects 

OR 
(95% 
CI) 

P† 

BBCS 3149/5502 

0.97 
(0.87 

to 
1.09) 

.63 1318/5502 

0.95 
(0.82 

to 
1.11) 

.53 1829/5502 

0.99 
(0.87 

to 
1.13) 

.88

BGS 3661/4377 0.98 
(0.87 .66 1798/4377 0.92 

(0.80 .22 1855/4377 1.04 
(0.91 .60



to 
1.09) 

to 
1.05) 

to 
1.19) 

BIGGS 909/852 

0.96 
(0.75 

to 
1.21) 

.71 403/852 

0.80 
(0.58 

to 
1.10) 

.17 477/852 

1.13 
(0.87 

to 
1.48) 

.37

CGEMS 1145/1142 

1.00 
(0.82 

to 
1.21) 

.98 – – – 1145/1142 

1.00 
(0.82 

to 
1.21) 

.98

BBCS/WTCCC 1687/5662 

0.91 
(0.79 

to 
1.04) 

.17 917/5662 

0.87 
(0.72 

to 
1.04) 

.14 764/5662 

0.94 
(0.78 

to 
1.14) 

.55

All 10551/17 535 

0.96 
(0.90 

to 
1.02) 

.22 4436/16 393 

0.91 
(0.83 

to 
0.99) 

.03 6070/17 535 

1.01 
(0.93 

to 
1.10) 

.82

Age at diagnosis was missing for 45 case subjects (eight in BBCS, eight in BGS, 29 in BIGGS). Tests for 
heterogeneity between studies (Cochran Q) and estimates of the proportion of total variation due to between-
study heterogeneity (I2) were: All case subjects: Q = 0.90, df = 4, P = .92; I2 = 0%; Case subjects aged ≤50 
years at diagnosis: Q = 1.19, df = 3 P = .76; I2 = 0%; Case subjects aged >50 years at diagnosis: Q = 1.52, df = 
4, P = .82; I2 = 0%. BBCS = British Breast Cancer study; BGS = Breakthrough Generations study; BIGGS = 
Breast Cancer in Galway Genetic study; CGEMS = Cancer Genetic Markers of Susceptibility study; CI = 
confidence interval; OR = odds ratio; WTCCC = Wellcome Trust Case–Control Consortium; – = not applicable. 
† Two-sided likelihood ratio test for null hypothesis that OR = 1.0. 

To examine whether rs10273424 (CYP3A cluster) was associated with the risk of breast cancer, we selected a 
proxy—rs10235235 [which is included on the Illumina Human 370K, 550K, and 1M arrays used in our genome-
wide association scan,[39] CGEMS,[33] and WTCCC,[32] respectively]—that tags rs10273424 (r2 = 1.0 based on 
HapMap data, release 27 of the National Center for Biotechnology Information genome Build 36.3). We 
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data for breast cancer case patients from our genome-wide association scan,[39] for control subjects from the 
WTCCC,[32] and case patients and control subjects from CGEMS.[33] Together, these studies comprise genotype 
data on 10 551 breast cancer case patients (of whom 42% were diagnosed at age ≤50 years) and 17 535 
control subjects (Table 3). 
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to 

1.21) 
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1.48) 
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Age at diagnosis was missing for 45 case subjects (eight in BBCS, eight in BGS, 29 in BIGGS). Tests for 
heterogeneity between studies (Cochran Q) and estimates of the proportion of total variation due to between-
study heterogeneity (I2) were: All case subjects: Q = 0.90, df = 4, P = .92; I2 = 0%; Case subjects aged ≤50 
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confidence interval; OR = odds ratio; WTCCC = Wellcome Trust Case–Control Consortium; – = not applicable. 
† Two-sided likelihood ratio test for null hypothesis that OR = 1.0. 
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4, P = .82; I2 = 0%. BBCS = British Breast Cancer study; BGS = Breakthrough Generations study; BIGGS = 
Breast Cancer in Galway Genetic study; CGEMS = Cancer Genetic Markers of Susceptibility study; CI = 
confidence interval; OR = odds ratio; WTCCC = Wellcome Trust Case–Control Consortium; – = not applicable. 
† Two-sided likelihood ratio test for null hypothesis that OR = 1.0. 
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Discussion 

The main finding of this study was a strong association between a tag SNP (rs10273424) mapping 50 kb 3′ to 
CYP3A5 and lower levels of urinary E1G in premenopausal women. This same SNP showed modest evidence 
of an association with a reduction in breast cancer risk in case subjects who were diagnosed at or before age 
50 years, a finding that is consistent with lower circulating E2 levels in carriers of the rare allele of rs10273424. 
Although the association between urinary E1G level and circulating levels of E2 within the general population is 
well established (25,26), further work will be required to demonstrate that this relationship is not modified by 
genotype at the CYP3A locus. The CYP3A genes (CYP3A5, CYP3A7, CYP3A4, and CYP3A43) occur as a 
cluster on the long arm of chromosome 7 (7q22, Figure 2). CYP3A4, the major isoform in adults, is expressed 
in several tissues including breast but predominantly in adult liver, where it is the most abundant P-450 
enzyme, accounting for 30% of total cytochrome P-450 proteins.[40] CYP3A4 is responsible for oxidation of a 
broad range of substrates, including endogenous hormones, exogenous hormones, and hormonal agents that 
are used in the treatment of breast cancer, such as tamoxifen (40,41). 

We searched the literature for other studies that had tested for an association between SNPs that mapped to 
the CYP3A locus and risk of breast cancer. A nested case–control study of common variants in estrogen 
biosynthesis and metabolism-related genes conducted in US radiological technologists reported that a rare 
nonsynonymous CYP3A4 SNP (rs4986910, M445T) was associated with reduced risk of breast cancer risk 
(OR = 0.3, 95% CI = 0.1 to 0.9; P = .04).[42] However, we found no association between rs4986910 and urinary 
levels of E1G ( Table 1 ) or any of the other hormones tested. The National Cancer Institute Breast and 
Prostate Cancer Cohort Consortium (BPC3) screen (18,43) included five CYP3A4 SNPs, two of which were 
also genotyped in this study (rs2242480 and rs4646437, Table 1 ), and there have been several studies of a 
CYP3A4 promoter variant (CYP3A4*1B, rs2740574) and predisposition to breast cancer.[44–48] No associations 
between these SNPs and hormone levels or breast cancer risk were reported. 

Table 1. Associations between single-nucleotide polymorphisms (SNPs) spanning 262 kb 
mapping to 7q22.1 (cytochrome P450 3A cluster) and urinary estrone glucuronide levels in 
729 premenopausal women* 

Geometric mean 
E1G level in 
μmol/mol by 
genotype‡,§ 

SNP Coordinate† 

Major 
allele, 
minor 
allele MAF 11 (n) 12 + 22 

(n) 

Per-allele 
change in 

E1G‡, % (95% 
CI) Ptrend∥ 

Per-allele 
change in 

E1G¶, % (95% 
CI) Ptrend∥

rs10273424 99034009 T, A 0.07 17.8 
(619) 13.9 (96) −21.8 (−27.8 

to −15.3) 
2.7 × 
10−9 

−26.2 (−32.7 
to −19.0) 

1.9 × 
10−10 

rs7792939 99045812 T, C 0.13 16.6 
(551) 

17.7 
(177) 

6.3 (0.1 to 
12.9) .05 17.9 (5.5 to 

31.7) .004 

rs776746 99108475 G, A 0.07 16.9 
(629) 

16.4 
(100) 

−2.6 (−10.1 
to 5.4) .51 4.9 (−13.4 to 

27.1) .62 

rs2257401 99144621 G, C 0.09 16.9 
(609) 

16.7 
(120) 

−1.3 (−8.0 to 
5.9) .72 −5.6 (−20.6 

to 12.2) .51 

rs6945984 99186264 T, C 0.11 16.9 
(577) 

16.7 
(151) 

−1.1 (−7.3 to 
5.5) .74 −3.4 (−26.2 

to 26.4) .80 

rs4986910 99196460 T, C 0.01 16.8 
(720) 20.6 (9) 22.3 (−5.5 to 

58.2) .13 3.3 (−12.4 to 
21.9) .70 

rs2242480 99199402 C, T 0.09 16.9 
(598) 

16.7 
(127) 

−0.1 (−6.6 to 
6.8) .98 3.6 (−2.5 to 

10.1) .26 

rs4646437 99203019 C, T 0.10 16.9 
(591) 

16.9 
(138) 

0.9 (−5.6 to 
7.8) .80 −0.9 (−21.6 

to 25.3) .94 

rs680055 99295541 G, C 0.05 16.8 
(659) 17.0 (70) 1.1 (−7.9 to 

11.0) .82 14.4 (−11.6 
to 47.9) .31 



* CI = confidence interval; E1G = creatinine-adjusted mean follicular urinary estrone glucuronide; MAF = minor 
allele frequency; n = number of individuals with the given genotype. 
† In base pairs, Build 36.3. 
‡ Adjusted for hormone measurement batch only. 
§ MAFs for all of the SNPs at this locus are low, and in each case, there were fewer than 20 women with the 22 
genotype; accordingly, geometric mean E1G levels are presented for 12 and 22 genotypes combined. 11 = 
common allele homozygote, 12 = heterozygote, 22 = rare allele homozygote. 
| Two-sided t test (1 df) for null hypothesis that the per-allele difference = 0%. 
¶ Adjusted for hormone measurement batch and eight other SNPs genotyped at the CYP3A locus. 
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Multiple variants in SHBG have been found to be associated with plasma SHBG levels, and when more than 
one study has tested the same variant, the associations have been consistent (Supplementary Table 5, 
available online) (15,16,18). However, none of the other studies examined the nonsynonymous SNP rs6258 
(P185L); the analysis by Thompson et al.[15] included rs13894 (a noncoding variant that is moderately correlated 
with rs6258) and reported a statistically significant per-allele change in SHBG levels of −15% (95% CI = −20% 
to −9%), which is similar in magnitude to the reduction that we observed for rs13894 in this study (–15.1%, 



95% CI = −22.0% to −7.6%). In this analysis, the association between the rare allele of rs13894 and a 
reduction in SHBG levels was weaker than the association between the rare allele of rs6258 and reduced 
SHBG levels (per-allele change = −59.9%, 95% CI = −69.6% to −47.2%), and the proportion of variance 
explained by the nonsynonymous SNP was much higher (rs6258: r2 = 4.9%; rs13894: r2 = 1.7%). However, to 
our knowledge, none of the SHBG variants tested to date has been found to be associated with the risk of 
breast cancer, possibly because the reported association between SHBG levels and breast cancer risk in 
postmenopausal women is very modest.[2] Given the rarity of rs6258 (MAF = 0.01) and the modest association 
between SHBG and the risk of postmenopausal breast cancer, we did not test for an association between 
rs6258 and risk of breast cancer in this study. 

We also searched the literature to determine whether there were any variants that mapped to loci included in 
this screen and for which there was consistent evidence of an association with circulating levels of one or more 
sex steroid hormones. Multiple investigators have reported analyses of SNPs at the CYP19A1 and CYP17A1 
loci and circulating levels of E2 and E1 and E2:testosterone and E1:androstenedione ratios (16,49–52). Three 
variants in CYP19A1—a [TTTA]n repeat in intron 4, a nearby 3-base pair (TCT) deletion (rs11575899), and a 
T/C SNP in the 3′ untranslated region (rs10046)—have been studied extensively and reviewed.[51] Conflicting 
results were reported for the [TTTA]n repeat and rs115758, whereas all three studies that tested for an 
association between rs10046 and E2:testosterone and/or E1:androstenedione ratios (16,49,50) reported higher 
ratios in carriers of one or two T alleles. A subsequent study[17] genotyped 19 tag SNPs selected to capture the 
common variation within a 181-kb region spanning the CYP19A1 locus. That study showed a convincing trend 
of higher plasma levels of E2 and E1 and higher E2:testosterone and E1:androstenedione ratios in carriers of 
one or two T alleles. However, all of these analyses tested associations with hormone levels in 
postmenopausal women. In our analysis of hormone levels in premenopausal women, there was no 
association between rs10046 and urinary E1G or plasma androstenedione, nor was there an association with 
any of the other 40 CYP19A1 SNPs that we tested (Supplementary Table 6, available online). Although our 
sample size (n = 729) was smaller than those of Dunning et al. [n = 1795[16]] and Haiman et al. [n = 3325[17]], we 
still had reasonable power to detect a per-allele difference of 5.5% as reported by Haiman et al.[17] The lack of 
association between rs10046 and either urinary E1G or plasma androstenedione in our study may reflect a 
difference in E1 metabolism between pre- and postmenopausal women. In premenopausal women, the 
hypothalamic–pituitary–gonadal axis is subject to complex feedback controls that are not relevant in 
postmenopausal women, in whom the ovaries do not synthesize estrogens; these feedback controls may lead 
to a rebalancing of estrogen levels in the presence of SNPs that affect estrogen levels, and therefore the effect 
of the SNP may not be observable in steady-state measurements in premenopausal women. Further studies 
will be needed to determine whether this lack of association between rs10046 and E1G levels in 
premenopausal women reflects a difference in E1 metabolism between pre- and postmenopausal women or a 
chance observation. 

The most commonly studied CYP17A1 SNP—rs743572 (−34T>C)—occurs within the promoter sequence. 
Olson et al.[51] identified 12 studies that tested for an association between rs743572 and hormone levels, of 
which two small studies (53,54) reported statistically significant associations between rs743572 and circulating 
levels of one or more of the hormones tested, whereas the majority of the studies found no statistically 
significant associations. Subsequent analyses from the BPC3 consortium (18,52) found no association 
between rs743572 and plasma levels of sex hormones in 3723 postmenopausal women. We genotyped 10 
variants in CYP17A1, including rs6163, which is highly correlated with rs743572 (r2 = 1.0); we found that the 
minor (A) allele of rs6163 was associated with a modest reduction in levels of urinary E1G and a modest 
increase in levels of plasma androstenedione in premenopausal women, but neither association was 
statistically significant after accounting for multiple testing (Supplementary Table 7, available online). 

The strengths of this study include our use of E1G measurements that took into account the cyclic variation in 
E1G levels in more than 700 premenopausal women and our approach of tagging entire gene clusters, 
including relatively large (50 kb) regions of noncoding flanking sequences. Study limitations were that body 
mass index was measured at interview, not at sample collection, and thus may not be an accurate 
representation of the woman's body mass index at the time the hormone measurements were made, and that 
androgenic precursors of E2 and E1 were only measured in a subset of women (397 or 398). The fact that we 
found no association between DHEA, DHEAS, androstenedione, or testosterone and any of the variants that 
we genotyped may, therefore, simply reflect a lack of statistical power. 

In conclusion, we have identified two novel associations: A nonsynonymous SNP in SHBG that may be 
causally associated with lower plasma SHBG levels and a noncoding variant at the CYP3A locus that is 
associated with lower urinary E1G levels and a reduced risk of breast cancer in younger women (ie, those aged 



≤50 years). The implication of the latter finding is that we have identified a long-range regulatory element that is 
tagged by rs10273424 and maps 50 kb 3′ to CYP3A5. It is entirely plausible that rs10273424 mediates an 
effect on E1G levels, and, hence, the risk of breast cancer through differential expression of one of the CYP3A 
genes, possibly the predominantly expressed CYP3A4. Although replication of our findings is required, our 
observation of an association between rs10273424 and urinary levels of E1G may have wider implications; 
CYP3A4 is responsible for the oxidative metabolism of an estimated 50% of all clinically used drugs,[55] 
including exogenous hormones that are used in postmenopausal hormone replacement therapy and hormonal 
agents that are used in the treatment of breast cancer. Hence, genotyping of rs10273424 may provide a 
biomarker for identifying a subgroup of women who will be disproportionately affected by such treatments. 

Contexts and Caveats 

Prior Knowledge 

Epidemiological studies have provided indirect evidence for an association between premenopausal hormone 
levels and the risk of breast cancer. Genetic factors influence the levels of endogenous sex steroids in both 
pre- and postmenopausal women, suggesting that common single-nucleotide polymorphisms (SNPs) in genes 
involved in sex steroid synthesis or metabolism are good candidates for breast cancer predisposition alleles. 

Study Design 

Endogenous estrone glucuronide (E1G) and pregnanediol glucuronide (PG) levels were measured in urine 
samples from healthy premenopausal women using a protocol that takes into account the cyclic variation of 
estrogen and progesterone. The women were genotyped for 642 SNPs that tagged genes that might influence 
endogenous sex steroid levels. The association between a single SNP and the risk of breast cancer was 
examined using data from 10 551 breast cancer case patients and 17 535 control subjects. 

Contribution 

A tag SNP (rs10273424) mapping 50 kb 3′ to CYP3A5 was strongly associated with lower levels of urinary E1G 
in premenopausal women and showed a modest association with a reduced risk of breast cancer risk in women 
who were diagnosed at or before age 50 years. 

Implications 

A long-range regulatory element tagged by rs10273424 may mediate an effect on E1G levels, and, hence, the 
risk of breast cancer through differential expression of possibly the most predominantly expressed CYP3A 
gene, CYP3A4, which is responsible for metabolism of endogenous and exogenous hormones and hormonal 
agents used in the treatment of breast cancer. 

Limitations 

Body mass index was not measured at the same time that the hormone measurements were made. 
Androgenic precursors of estradiol and estrone were only measured in a subset of women. 

From the Editors 
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